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No, 10’77

THIN-WALLED CQLIJMNS

ABOVE THE BUCKLING LTMI!C*

By 1?. Reinitzhuber
\

INTRODUOTI.OI?

When thin-walled columns formed from flanged sheet, such ‘“
as used in airplane construction, are subjected to axial load,
their behavior at failure varies according to the slenderness
ratio.

On long columns the axis deflects laterally while the
cross section form is maintained; buckling results, The re-
spective breaking load in the elastic range is computed by
E~le~:s formula and for the plastic range by the Wngesser-
Karman formula. Its magnitude is essentially dependent upon
the length. On intermediate length columns, especially where
open sections are concerned, the cross seotion is distorted
whi~e the cross section form is preserved; twisting failure
results. The buckling” load in twisting is calculated accord-
ing to Wagner and Kappus (reference 1). On short columns the
straight walls of low-bending resistance that form the column
are deflected at the same time that the cross section form
changes - buckling occurs without immediate failure. Then the
buckling load of the total section computable from the buckling
loads of the section walls is not the ultimate load; quite
often, especially on thin-walled sections, it lies considerably
higher and Is secured by tests. Both loads, the buckling and
the ultimate load are only in a small measure dependent upon
length.

The present report is an attempt to theoretically inves-
tigate the behavior of such short, thin-walled columns above

,. the.,b,uckli,ng,load with the conventional calculating methods.

*fiBeitrag zur Berechnung gedriickter, diinnwandiger Profile
oberhalb der Beulgrenze,~ Luftfahrtforschung, vol. 19, no. 7,
July 20, 1942, Pp. 240-247.

/



The cross section of the column selected was a s’quare, which
-. .-byreason of its symmetrical properties-leii’ds i’t~elf”’best to

mathematical treatment. The results are then checked by tests.

I THZC)RY

A closed, section (hollow cyliader) of elastic material
(modulus of elasticity E, poisson~s ratio V) thy c:;;s
section of which is a square with sides of length
sheet thickness s, is centrally loaded with & force P in
longitudinal direction (direction of cylinder axis). @
placing through the median plane of one of the four identical
sides a system of coordinates X, yf z (fig. 1), the defor-
mat ions u, v, w are in direction of the coordinates, and
the stresses ~x$ Uy$ and T along the median plane.

If the mean compressive stress p = P/4sb is lower than
the critical buckling stress p* the stresses are ax = -p,

aY=o’T=O - %, v =and the deformations u = ~

Pb
+V;YSW ‘+U3Z”

Between the shortening c and the

compressive stress
to the equation p

p proportionality exists then according
= E< as far as the buckling limit; at

the latter p* = Ee*, where C* is the critical compression,

If the mean compressive stress p exceeds the critical
buckling stress P* , the side walls wrinkle lengthwise, the
cross section assumes the form shown in figure 1, on which)
since the right angles remain at the corners, a bulge in the
ode side area corresponds to a dent in the next one and the
corners remain square. If the short column is of sufficient
length, the buckles in longitudinal direction have in the
area not affected by the disturbed end surfaces, the constant
length 1; for great length, t = b, The behavior of the
profile is therefore periodic with the length 1’. The prob-
lem thus reduces to an analysis of one of the four identical
rectangular sides between two successive junction lines as a
plate (dimensions bXZ). ,, ,. ,.,,, ,,. .. ..,.,.

According to the theory of the thin elastic plate with
great deflections (reference 2) the stresses ~x$ ‘Y ‘

and T

in the plane of the plate fol~ow the equations “
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. .. . .r=,-=.,-’ ... –” ‘.’”’”

a~x b
=+3-Y ‘“”0 1,,-..,.---

which are satisfied by the stress funat ion formula

f.?~ = Qyy, Cry = (BXx, ‘r= - @xy

(la)

(13)

the stress function @ and the sag w being related through
the fundamental equations

and

Zsa.
—— AAw - @ry Wxx-@xx Wm+Z#xy Wxy = (J
12(1-V2)

The deformations u, v in the plane of the plate $OI1OW
from

E3 u~ = @yy - V4XX- ~ WX2

E Vy = #xx - I@yy - + WY2

(2)

.(3)

(4)

(5)

(The subscripts U, T, w, and Q denote the partial de-
rivatives conformable to the respective variables.’)

The combined action between the four side walls at the
corners y = A b/2 stipulates the compliance with the bound-
ary conditions

,,, ,,. ....

(6a)

(61J)

(6c)
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,. “(x+ =0,
+b/2

f’

P
s uxdr=-pbs =-~

-“b/2

4

(6d)

(6e)

Since no exact integration of equations (2) and (3) has been
published so far, recourse is had to an approximate method ‘by
Maguerre (reference 2) and the Ritz formula

llx I-ty
w = q +fcos~cos~ (7)

is chosen for the deflection, with f as the free value
which closely approaches the form of buckling occurring short-
ly after exceeding the critical load and satisfies (6a).
Equation (7) entered at the right-hand side of equation (2)
gives

( )&j@...%(:L2 Ces ~+COS~
zbzxz

of which the particular integral

K )
2

~(P) =_E@ t aco~ *
()

2nx ~ J_ 2Try
Cos — 1(8a)

32 7 J b

can be pgsted. For compliance with (6b) to (6d) solutions
periodic in x direction and symmetrical with respect to the
x and y ax”is

(~(h) = _ py2 2Try Cos 21Tx
+ A Cosh ~

2 7
,.. ,.

,

,_. ,,,. . . . ....,,,. L.. .

+B~Sinh~cos~
)

(8b)

are added to the homogeneous equation AiJ@=O related to
(2), after which the complete solution for @ reads



NACA TM NO. 1077 5“’

4= (&d ~ @d (8)

!, ,.,... . ,!, .. . .--, ...—.-.-, --- .-, .- - —. .,.

Equation (8) for @ entered in (lb), (4), and (5) gives

“Y=MW”+WA

- ~ [(JL(H v)+ 213)Cosh~

~ Sinh ~ 1a?z$$s~ “+(l+v)B 2’nx * ~
(9a)

[
+~ (A(l+”v) -B(l-v)Sinh~~

2~Y Coih ~~+(l+u)BY 1~o~21’lx “—+l?py
t

(9e]

The boundary condition (6a) is satisfied by (7); to satisfy
,,,,,(,6b)$ which with (7), becomes ,. ~~ . ...- -.

, ‘(x+)=’.

1. —
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and also (6c), (6d), and (6e); that is, of altogether four......... ...
boundary condiiio~s, ”on”ly three’ Int-egration- constants A, -B,
and p are available. A suitable choice is therefore neces-
sary to ensure satisfactory approximate solutions.

Of the four possibilities

I (6b1), (6 C), (6d) ,**..*.“..● .. (lea)

(63’), (6c), (,6e) ............ (lOb)

(6b’), (6d), (6c) ● ..*...,.*.* (1OC)

(6c), (6d), (6e) ............ (lOd)

available for predicating A, B, and p, (lOa) and (lOb)
cancel out, because for these the longitudinal borders of the
plate stipulate simultaneously the conditions ffy = O in

(6c) and v = constant in (6bt), which can be reciprocally
excluded and therefore do not eliminate the boundary integral
in equation (13). With (1OC) and (lOd) it is found from (6e)
by integration of (9a) for ax over the plate width by ob-

servation of (6d), that the constant of integration p is
directly equal to the average value of the compressive stress

(ha)

The other two unknown constants A and B are thep obtained
conformably to (1OC) and (lOd) from (6b), (6d) or (6c) and
(6d). 3’rom (6b) and (6d) the result is A = B = 0; this ease,
already investigated by Marguerre on the effective width of
the stiffened plate in compression (reference 2)$ is not as
suitable an approximate solution as those obtainable from
(6c) and (6d) and which were therefore used for computing A
and B.

Equatione (9b) and (9c} afford for y = * b/2 in accord
with (6c) and (6d) the equations

—. .,.——. .—..—-——. . . .- .—..——— —- . ... ------ —. .-—-----..-
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hence

,. -. ,,,. ..–!- .,’

Ef a
2 Sinh~”~+~$”

()

~
Coi-h “m~

A=-— ———
16 b

(llb)
Sinh 2 n~+2w3

(llC)

‘lJheconstants of integration A, B, and p. given by (11)
satisfy (lOd) but not (6b1 ) which specifies that the deforma-
tion v dn the longitudinal edge of the plate shall be con-
stant and equaZ to ~, and for which (9e) gives ~

‘(’0= (w’” “m
+ 2Tr

{
~ [A(l+v) -B(l-v)]Sinhn~

On posting hedein the values (llb) and (llc) for A and B
it is found that in fact the second summand variable with x
does not disappear, hence that V(X, +b/2) does not become
constant. In order to obtain a value for o Independent -of
k with the least possibl,e deviations from (6b~ )

‘=(-%%’’’’5)+
is put equal to the average value of v at the longitudinal
plate edge.

The equation (3) for w can no longer be satisfied’, in
oonsequonce of Ritzts formula and is therefore replaced by
the demand to so choose the free value f that the l?orm
change energy stored in the plate . .. .,,.

k.,,. ,,

~~’?’??
~[(A#)2 -2(l+v)(@x@W -@:y)]

-1/2 :?J/2
E S3

+—
24(1 -v2)

[(Aw)2- 2(1 - v)(w’xww-
}

w$!y)] dx dy (12)

l-. --—
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becomes a minimum. The unknown f is determined from

.> “-~x’=’’()’~””Dif f~r~”ri~i~tion of (12) with re,e’~ec~ tj’ f “’before
A*
U.L

integrating (Galerkin method), while bea~ing in mind (la) in-
stead of (3) gives

- 2/2 - b/2
&

- b/2 x=k2/2

+ b/2

i- ES3-.—-- {/’1 I
(v W.yy - 2W.3T7– w~.x) ~ ~Y

12(1 – v~) “
- b/2

+ 1/2
x= *t/2

+ J’1 I(V Wxxy -2 Wxxy - ~yyy) ~ dx

- a/2 y = A b/2

-b/2 x=*2/2 -1/2 Y = + b/2

I 1)aw.%.,=..o. , ,-.,.,+.2 {.1. - v) ..xy &--

af

Y = * b/2
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In equation (13) the boundary terms and integrals disa~pear
with formula (7) and the boundary conditions (6c) and (6d)... ..,.

...... ... .,..,.,,.. .. .

With the solution of f from (13) the stress and strain
condition of the section can be calculated from equations
and (9),

The subsequent investigation is carried out for the case
of square bulges (% = 1), as they occur in the undisturbed
i.one on the sufficiently lon

7
cylinder. Entering the ex-

pression (8) for @ and (11 for A and B, equation (11)
yields

where p is replaced by the expression

p = ‘(c-%(-m (15)

following from

and

Posting f = O
shortening t:

‘(+ $ ‘)=*‘ ~ ‘cf*‘quation“d))
u Gosh 2n-1-—-——-— = 0.30985

= IT(2n+ Sinh 2rr)

in (14) gives the critical value for the

() z 1
E(f=o)=$s*-—

l-v?
= C*

hence (14) gives —.

() (,
m’ a=k(~-C*) k=& &= (),5917
71 ‘)

(16)

The connection betwee”n’”rnean’ stf’ess p“ ‘“tin”d”mea’hc follows
from (15) with .

P-P * ~ Ere~ (6 - 6*) (17)
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where

,+.~- .- >Eted = “(l - k) ‘E = ~--~’ E = 0.4083 E

The stress-strain equation (17) is reproduced in figure 2.
The apparent stiffness above the buckling limit is thus only
about 0.4 times as great as below the critioal buckling load.

Entering (16) and (17) in (7) and (9) gives
\

(2c=_._L_JL _
P* 1-K ~*

{
1 + CL Cosh

T 1
-7= (—---.--
P 1-K PP*

f

) 2rrx
1 sin~

L b b b J

(
cG=- 0.35008, $ = + 0.08429,,~—

1-K
= 1,44896

)

The numerical evaluation of these equations for simple exceed–
ing of the buckling load (p/P* = 2) as shown in figure 3.

The stress distribution gives only an approximate picture
of the actual condition, because the deformation of v at the
section edge is not constant and independent of x as (6bJ)
stipulates . In spite of that the stress distribution is quite

,. plaint the wavel~ke deflections’:in ‘the s’i-dewalls after the
critical buckling load is exceeded tend .to pull the corners
into the area of maximum deflections. This results in tensile
stresses in y direction in the middle of the buckles which
balance the compressive stresses occurring in the reversal
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point of the waves: This balance can be established only
with.the,aid..of... sh.e~ringstresqeq..~,,.,,.Th,e.compres.sive stresses :.-.,...,
in-’ x ““”direct”ionare unevenly distributed after the critical
buckling load is exceeded, the compressive stresses move
toward the corners. Depending upon the position of the cross
section the shearing stresses produce a different type of
stress distribution over *the plate width so that the shift of
the compressive stress on the plate edges is greater in thd
cross section with maximum deflection than in the cross see-
tion at the reversal point of the waves.

The reason that the investigation carried out in the
foregoing is only approximately valid lies in the fokm of”
buckle established with formula (7) for, which the corners
were assumed to he square. With increasing exceeding of the
critical buckling load the corners of the section cease to
remain square, but pull into the cross sections in which the
side walls are subjected to the greatest deformations. An
extension of formula (7) by addition of a second free value
of the type

and furthe~ terms of this series should certainly produce
better results. If it is desired to use only one free value
and to achieve an improvement, formula (7) might ~;oretgined
and other solutions of the homogeneous equation =

with new constants of integration added in (8b) and these
then determined by point-by-point compliance with the boundary
conditions . However, the paper work involved is so great that

I its application was foregone.

ExPERIMENT

The purpose of the tests was to check the aforementioned
theoretical results by actual experiments, with special ref-
erence to formula (7) and the stress-strain formula (17)0

The test specimen was a square cylinder (fig. 4) of
rned+ua,h,ard .she,et..,br,,ass,.with,the,,,riv,etse~rn..~unning,along the.. ..
center of a side. The characteristics of the brass sheet
(airplane material identification 2160.7) were:
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Thickness of sheet s = 0,61 to 0.62 mm, average: 0.615 mm
*.,,. ...,,. ,,.,, ,,,!,.,,. ,., ,,.,,.,

Modulus of elasticity E = 10,000 to 11,000 kg/mm2, ‘“average:
10,500 kg/mma

,,1
,’

Yield point ~o.a = 24.4 kg/mm2

!Censile strength ffB = 35,2 to 38.6 kg/mma

Elongation 8 = 50 percent

The wrinkles were measured on two side walls ’by means
of a dial gage and a machined angle section, with arm set
parallel to two sides of the cylinder as shown in figure 4.
The sides parallel to the arms were explored by shifting the
dial gage, The deformations normal to the direction Of com-
pression were measured in the center of the two side’ walls
over the entire length and at two cross sections (test sta-
tion 18 and 25). The length change of the diagonals under
increasing load was recorded by vernier calipers, the compres-
sion of the test specinen oy dial gage. The first reading
was made at 30-kilogram load; the other load stages at which
measurements were made, were 200, S00, 700, 1000, and 1200
kilograms .

The results of the side wall neasurenents are shown in
figure 5. According to figures5a and 5b, the waves formed in
longitudinal direction are approximately alike so far as the
uniformity was not disturbed by pre-buckling and edge effects.
An tncrease in load was accompanied by a “slight change in the
wave length. As one side area bulged out the area next to it
bulged in and vice versa,

The lerigth change of the diagonals is represented in fig-
ure 6. The absolute size of these deformations is sne,ll coa-
pared to the side wali bulging. Serviceable test values start
at 1300-kilogra,m loading, shortly before” the breaking load is
reached. The points at which the waves in the side areas have
their extrene values disclosed a reduction in length of the

b.. ,diagona.ls,,,tbs,Juucti.on ,.lin~:,of th,e waves a slight increase
in corner distance,

.-...... .... . >_,,, ,..

!Ule result of the compression measurement on the test
specfnen under increasing load is given in table lt
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The specimen fails at P = 1330 kilograms through defor-
mation of the corners at test ‘stations 33 and 34, where the
waves’ of th”e”’snide----easeashave their ‘jun”cti’o’nlines. ‘The failure
(fig, 7) appears to be instability failure.

●

On the basis of the side wall measurements formula (7)
can be regarded as depicting the deformation area so long as
the critical load is not too greatly exceeded; if further ex-
ceeded the corners will not remain square, so that formula
(7) yields inferior approximate solutions, as already indicated.

Tlith a view to comparing the experimental data for tile con--
pression with the theoretically obtained stress-strain equa-
tion the values of table 1 were plotted in figure 2, where

- ‘L- (%%92=0-000213
~2

C* =

3 1 - 0.32

P* = 0.000213 X105O,OOO = 224 kg/cm2

of the critical
2.3 times ex-

Good agreement obtains up to a sinple exceeding
buckling 10ad (P/P* = 2). Failure OCC~~j~ at
ceeding of the critical buckling load = 3.3). In the
elastic range, before reaching the theoretical critical buck-
ling load, the test points do %ot lie on the theoretical
straight line, which is probably attributable to the pre.-
buckling inevitable on thin sheet. On the basis of the good
agreement of the theoretical stress-strain curve above the
critical buckling load the calculation of the constants of
integration A and B fron’(lOd) aypears therefore justi-
fied also. The use of (1OC) as basis of the study would have
resulted in a decrease of the apparent stiffness above the
buckling liuit by 0,5 times of the value valid in the elastic
range, a result obviously less in agreenent with the test data
of figure 2 than that secured from (lOd) with % ed = 0.408 E
(equation 1’7).

A check test of the stress-strain curve was run on a
specinen of duralunin with the sane cross section as that of
figure 4 (aircraft tiaterial 3116.5), (length: Z = 800 m/~~),
Its .general,.characteri s.tics. were as$ollows:

Sheet thickness s = 0.61 to 0.67 mm,, average = 0,64 nm

Modulus of elasticity E = 6540 to 7320 kg/mma, average
6830 kg/nm2
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Yield limit a0.2 = 29.1 kg/nn2

Tensile strength UB = 41.6 to 42.2 kg/nr;lZ

Illongation 6 = 20 percent

T11o compression with increasing load was measured; the
results are given in table 2, On putting the test values of
table 2 in ratio to the critical values

~z!
C* =— -“-L-T(%9’=‘*oo023231-O*3

P* = 0,000232 X683J100 = 158 kg/ClS2

followed by plotting in figure 2 it is found that the theo-
retical stress-strain curv~ is here also in good agreenent
with the test points up to e,simple exceeding of the critical
buckling load. Failure occurred at P = 1350 kilograms,
which corresponds to a 3.1 times exceeding of the critical
buckling load.

Sunning up it nay be stated that the tests fulf”illetl
their purpose, nar.lely,to check the formula (7) and~the stress-
strain equation (17). As a. consequence the stress-strain
equation (1?) secured theoretically with fornula (7) can be
regarded as practical up to a sinple exceeding of the critical
buckling load.

CONCLUDING NOTE

On the basis of the present report it iS possible to
obtain a picture” of the stress distribution and the strain
condition in a thin-walled, centrally loqded column of square
cross section above the critical buckling load, as well as
an insight into the relationship existing between stress and
strain. Above the critical buckling load the stress-strain
curve is linear according to fornuls, (7) in first approxima-
tion for the square section just as for the stiffened plate
in coupressioh, except that the range in which this equation
is applicable, is much .greafer compared to the breaking load
than on the compressed plate, While the test specirfiens de-
scribed previously failed at 2,3 and 3.1 tines exceeding of
the critical buckling load, the excess on the stiffened plate
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in compression may rise to several hundred times above the
,! critical buckling lea-d, before the plate fails .-.The knowledge

of the stress-strain equation is im~ortant when these sections
are used as stiffeners on compress ed.plates. The decrease in.

“ seotion stiffness above the critical buckling load with the
effective width must then be allowed for.

The theoretical prediction of the breaking value of thin-
walled flanged sections in compression is beset with great
difficulties since, apart from the obstacles indicated in the
present report, difficulties arise even In the elastic range,
the stress peaks in the corners exceed the elasticity limit
before the breaking value is reached and’ the premises of the
theory then do no longer hold. If, on the other hand, the
obtainment of the elastic limit by the stress peaks is re-
garded as a measure for the load capaci’ty of the sections, the
methods a~plied here make it possibl’e to obtain approximate
values for the allowable loads by theoretical means.

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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P

(kg)

o

200

300

400

500

600

700

800

900

1000

1100

1200

1300

3’

(l&g)

‘o
100”
200

300

400

500

60~
~od.

800

900

I.000

TABLE I

P= +’

(kg/cma)

o

102

152

203

254

305

355

406

457

508

558

609

660

Al

(mm)

TABLE 2

P
.P= T

(kg/cma)

o
49
97

146

195

244

293

‘341’

390

439

488

0

0.05

,09

.14

.22

.34

● 44
.55

.67

.80

.92

1.16

1.4’7

Al

(ma)

o

● 053

● 108

.175
1

,298

.440

.590

.780”

.968

1.195

1.433

0

.58 x 10-4

1.05

1.63

2.56

3.95

5.11

6.39

7,?9
9.30

10.69

13.48

17.08

0
.66 X 10-4

1.35 :

2.J.9

3,73

5,50

?.38

“9.75

12.10

14,95

17.90 :

.
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(3a) Normal stress~
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(3c) shear stress+

:.igures 3a to 3c.- Stress
distribution
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Figs. 3,4

( 3b) Normal stress

In the side wall of a thin-wall-
:d centrally loaded section with
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Figure ‘4.-
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(aircraft material 2160.7);
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“;.
:andum NO. 1077NACA T=chnical Memor

3r_rTlEr?iui!l
Fzg. 5

I al I

E’””%I

0
Test

=_ —---s

-3 (5b) Test station II

(5c) Test station” 1P

e d c

m

al

(5d) Test station 25

Figures 5a to 5d. Measurements on side walls of test specimen,
(aircraft material 2160.7)
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Figure 6.- Length changes in the diagonals (test stations III
and IV) of the brass “test specimen (aircraft

material 2160.7).

Figure 7.- Specimen after test.

Figures 8a and

(8a) (8b)

.

0.- Specimen
3116.5) 1

? duralumin (aircraft material
ler compressive load of 1200 kg.
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